MOE
Why Do We Need MOE?
Other Methods
Install
Install in docker
Install from source
OSX Tips
Building Boost
Linux Tips
CMake Tips
Python Tips
How does MOE work?
Build a Gaussian Process (GP) with the historical data
Optimize the hyperparameters of the Gaussian Process
Find the point(s) of highest Expected Improvement (EI)
Return the point(s) to sample, then repeat
Demo Tutorial
The Interactive Demo
Pretty Endpoints
Objective Functions
What is an objective function?
Properties of an objective function
Parameters
\(\Phi\)
Objective Functions
Example of Objective Functions
Multi-Armed Bandits
What is the multi-armed bandit problem?
Applications
Policies
Pointers
Examples
Minimizing an arbitrary function
Gaussian Process regression given historical data
Hyperparameter optimization of a Gaussian Process
All above examples combined
Setting thresholds for advertising units
Contributing
Making a pull request
Documentation
Testing
Style
Versioning
Releasing (For Maintainers)
Frequently Asked Questions
What license is MOE released under?
When should I use MOE?
What is the time complexity of MOE?
How do I cite MOE?
Why does MOE take so long to return the next points to sample for some inputs?
How do I bootstrap MOE? What initial data does it need?
How many function evaluations do I need before MOE is “done”?
How many function evaluations do I perform before I update the hyperparameters of the GP?
Will you accept my pull request?
moe package
Subpackages
Submodules
moe.resources module
Module contents
moe_examples package
Subpackages
Submodules
moe_examples.bandit_example module
moe_examples.blog_post_example_ab_testing module
moe_examples.combined_example module
moe_examples.hyper_opt_of_gp_from_historical_data module
moe_examples.mean_and_var_of_gp_from_historic_data module
moe_examples.next_point_via_simple_endpoint module
Module contents
C++ Files
gpp_optimization_test
gpp_domain_test
gpp_expected_improvement_gpu
gpp_heuristic_expected_improvement_optimization_test
gpp_linear_algebra_test
gpp_geometry
gpp_heuristic_expected_improvement_optimization
gpp_linear_algebra-inl
gpp_test_utils
gpp_logging
gpp_covariance
gpp_python_test
gpp_domain
gpp_python_common
gpp_hyperparameter_optimization_demo
gpp_geometry_test
gpp_math_test
gpp_cuda_math
gpp_python_model_selection
gpp_math
gpp_random_test
gpp_optimizer_parameters
gpp_expected_improvement_demo
gpp_optimization
gpp_test_utils_test
gpp_linear_algebra
gpp_python_expected_improvement
gpp_exception
gpp_model_selection
gpp_random
gpp_covariance_test
gpp_mock_optimization_objective_functions
gpp_python
gpp_model_selection_test
gpp_hyper_and_EI_demo
gpp_python_gaussian_process
gpp_common
gpp_expected_improvement_gpu_test
MOE
Docs
»
Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
J
|
K
|
L
|
M
|
N
|
O
|
P
|
Q
|
R
|
S
|
T
|
U
|
V
|
W
A
add_sampled_points() (moe.optimal_learning.python.cpp_wrappers.gaussian_process.GaussianProcess method)
(moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessInterface method)
(moe.optimal_learning.python.python_version.gaussian_process.GaussianProcess method)
ALL_REST_ROUTES_ROUTE_NAME_TO_ENDPOINT (in module moe.views.constant)
allocate_arms() (moe.bandit.bandit_interface.BanditInterface method)
(moe.bandit.bla.bla.BLA method)
(moe.bandit.epsilon.epsilon_first.EpsilonFirst method)
(moe.bandit.epsilon.epsilon_greedy.EpsilonGreedy method)
(moe.bandit.ucb.ucb_interface.UCBInterface method)
append_historical_data() (moe.optimal_learning.python.data_containers.HistoricalData method)
append_sample_arms() (moe.bandit.data_containers.HistoricalData method)
append_sample_points() (moe.optimal_learning.python.data_containers.HistoricalData method)
approx_grad (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
ArmAllocations (class in moe.views.schemas.bandit_pretty_view)
arms_sampled (moe.bandit.data_containers.HistoricalData attribute)
ArmsSampled (class in moe.views.schemas.bandit_pretty_view)
assert_points_distinct() (moe.tests.optimal_learning.python.optimal_learning_test_case.OptimalLearningTestCase static method)
assert_scalar_within_absolute() (moe.tests.optimal_learning.python.optimal_learning_test_case.OptimalLearningTestCase static method)
assert_scalar_within_relative() (moe.tests.optimal_learning.python.optimal_learning_test_case.OptimalLearningTestCase static method)
assert_vector_within_relative() (moe.tests.optimal_learning.python.optimal_learning_test_case.OptimalLearningTestCase static method)
B
bandit() (in module moe.easy_interface.bandit_simple_endpoint)
bandit_bla_view() (moe.views.rest.bandit_bla.BanditBLAView method)
bandit_class (moe.bandit.linkers.BanditMethod attribute)
(moe.tests.bandit.bandit_test_case.BanditTestCase attribute)
(moe.tests.bandit.bla.bla_test.TestBLA attribute)
(moe.tests.bandit.epsilon.epsilon_first_test.TestEpsilonFirst attribute)
(moe.tests.bandit.epsilon.epsilon_greedy_test.TestEpsilonGreedy attribute)
(moe.tests.bandit.ucb.ucb1_test.TestUCB1 attribute)
(moe.tests.bandit.ucb.ucb1_tuned_test.TestUCB1Tuned attribute)
BANDIT_EPSILON_SUBTYPES_TO_HYPERPARAMETER_INFO_SCHEMA_CLASSES (in module moe.views.schemas.bandit_pretty_view)
bandit_epsilon_view() (moe.views.rest.bandit_epsilon.BanditEpsilonView method)
bandit_ucb_view() (moe.views.rest.bandit_ucb.BanditUCBView method)
BanditBLARequest (class in moe.views.schemas.rest.bandit_bla)
BanditBLAView (class in moe.views.rest.bandit_bla)
BanditEpsilonFirstHyperparameterInfo (class in moe.views.schemas.bandit_pretty_view)
BanditEpsilonGreedyHyperparameterInfo (class in moe.views.schemas.bandit_pretty_view)
BanditEpsilonRequest (class in moe.views.schemas.rest.bandit_epsilon)
BanditEpsilonView (class in moe.views.rest.bandit_epsilon)
BanditHistoricalInfo (class in moe.views.schemas.bandit_pretty_view)
BanditInterface (class in moe.bandit.bandit_interface)
BanditMethod (class in moe.bandit.linkers)
BanditPrettyView (class in moe.views.bandit_pretty_view)
BanditResponse (class in moe.views.schemas.bandit_pretty_view)
BanditTestCase (class in moe.tests.bandit.bandit_test_case)
BanditUCBRequest (class in moe.views.schemas.rest.bandit_ucb)
BanditUCBView (class in moe.views.rest.bandit_ucb)
base_setup() (moe.tests.optimal_learning.python.comparison_test.TestEqualityComparisonMixin class method)
(moe.tests.optimal_learning.python.cpp_wrappers.expected_improvement_test.TestExpectedImprovement class method)
(moe.tests.optimal_learning.python.cpp_wrappers.gaussian_process_test.TestGaussianProcess class method)
(moe.tests.optimal_learning.python.cpp_wrappers.optimization_test.TestOptimizerParameters class method)
(moe.tests.optimal_learning.python.gaussian_process_test_case.GaussianProcessTestCase class method)
(moe.tests.optimal_learning.python.geometry_utils_test.TestClosedInterval class method)
(moe.tests.optimal_learning.python.geometry_utils_test.TestLatinHypercubeRandomPointGeneration class method)
(moe.tests.optimal_learning.python.python_version.covariance_test.TestSquareExponential class method)
(moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement class method)
(moe.tests.optimal_learning.python.python_version.optimization_test.TestNullOptimizer class method)
(moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer class method)
bernoulli_historical_infos_to_test (moe.tests.bandit.bandit_test_case.BanditTestCase attribute)
bernoulli_mean_and_var() (in module moe_examples.blog_post_example_ab_testing)
BernoulliArm (class in moe.bandit.data_containers)
BFGS_parameters (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
BLA (class in moe.bandit.bla.bla)
BoundedDomainInfo (class in moe.views.schemas.base_schemas)
build_closed_intervals_from_list() (moe.optimal_learning.python.geometry_utils.ClosedInterval static method)
build_covariance_matrix() (in module moe.optimal_learning.python.python_version.python_utils)
build_hyperparameter_grad_covariance_matrix() (in module moe.optimal_learning.python.python_version.python_utils)
build_json_payload() (moe.easy_interface.experiment.Experiment method)
build_mix_covariance_matrix() (in module moe.optimal_learning.python.python_version.python_utils)
build_random_gaussian_process() (in module moe.tests.optimal_learning.python.gaussian_process_test_utils)
C
calculate_system_ctr() (in module moe_examples.blog_post_example_ab_testing)
call_endpoint_with_payload() (in module moe.easy_interface.simple_endpoint)
check_point_inside() (moe.optimal_learning.python.cpp_wrappers.domain.SimplexIntersectTensorProductDomain method)
(moe.optimal_learning.python.cpp_wrappers.domain.TensorProductDomain method)
(moe.optimal_learning.python.interfaces.domain_interface.DomainInterface method)
(moe.optimal_learning.python.python_version.domain.TensorProductDomain method)
(moe.optimal_learning.python.repeated_domain.RepeatedDomain method)
choose_arm() (moe.bandit.bandit_interface.BanditInterface static method)
ClosedInterval (class in moe.optimal_learning.python.geometry_utils)
COBYLAOptimizer (class in moe.optimal_learning.python.python_version.optimization)
COBYLAParameters (class in moe.optimal_learning.python.python_version.optimization)
ComparableTestObject (class in moe.tests.optimal_learning.python.comparison_test)
compute_cholesky_variance_of_points() (moe.optimal_learning.python.cpp_wrappers.gaussian_process.GaussianProcess method)
(moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessInterface method)
(moe.optimal_learning.python.python_version.gaussian_process.GaussianProcess method)
compute_expected_improvement() (moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement method)
(moe.optimal_learning.python.interfaces.expected_improvement_interface.ExpectedImprovementInterface method)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement method)
compute_grad_cholesky_variance_of_points() (moe.optimal_learning.python.cpp_wrappers.gaussian_process.GaussianProcess method)
(moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessInterface method)
(moe.optimal_learning.python.python_version.gaussian_process.GaussianProcess method)
compute_grad_expected_improvement() (moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement method)
(moe.optimal_learning.python.interfaces.expected_improvement_interface.ExpectedImprovementInterface method)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement method)
compute_grad_log_likelihood() (moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood method)
(moe.optimal_learning.python.interfaces.log_likelihood_interface.GaussianProcessLogLikelihoodInterface method)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood method)
compute_grad_mean_of_points() (moe.optimal_learning.python.cpp_wrappers.gaussian_process.GaussianProcess method)
(moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessInterface method)
(moe.optimal_learning.python.python_version.gaussian_process.GaussianProcess method)
compute_grad_objective_function() (moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement method)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood method)
(moe.optimal_learning.python.interfaces.optimization_interface.OptimizableInterface method)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement method)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood method)
(moe.tests.optimal_learning.python.python_version.optimization_test.QuadraticFunction method)
compute_grad_variance_of_points() (moe.optimal_learning.python.cpp_wrappers.gaussian_process.GaussianProcess method)
(moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessInterface method)
(moe.optimal_learning.python.python_version.gaussian_process.GaussianProcess method)
compute_hessian_log_likelihood() (moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLeaveOneOutLogLikelihood method)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood method)
(moe.optimal_learning.python.interfaces.log_likelihood_interface.GaussianProcessLogLikelihoodInterface method)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood method)
compute_hessian_objective_function() (moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement method)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood method)
(moe.optimal_learning.python.interfaces.optimization_interface.OptimizableInterface method)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement method)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood method)
(moe.tests.optimal_learning.python.python_version.optimization_test.QuadraticFunction method)
compute_log_likelihood() (moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood method)
(moe.optimal_learning.python.interfaces.log_likelihood_interface.GaussianProcessLogLikelihoodInterface method)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood method)
compute_mean_of_points() (moe.optimal_learning.python.cpp_wrappers.gaussian_process.GaussianProcess method)
(moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessInterface method)
(moe.optimal_learning.python.python_version.gaussian_process.GaussianProcess method)
compute_next_points_to_sample_response() (moe.views.gp_next_points_pretty_view.GpNextPointsPrettyView method)
compute_objective_function() (moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement method)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood method)
(moe.optimal_learning.python.interfaces.optimization_interface.OptimizableInterface method)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement method)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood method)
(moe.tests.optimal_learning.python.python_version.optimization_test.QuadraticFunction method)
compute_update_restricted_to_domain() (moe.optimal_learning.python.cpp_wrappers.domain.SimplexIntersectTensorProductDomain method)
(moe.optimal_learning.python.cpp_wrappers.domain.TensorProductDomain method)
(moe.optimal_learning.python.interfaces.domain_interface.DomainInterface method)
(moe.optimal_learning.python.python_version.domain.TensorProductDomain method)
(moe.optimal_learning.python.repeated_domain.RepeatedDomain method)
compute_variance_of_points() (moe.optimal_learning.python.cpp_wrappers.gaussian_process.GaussianProcess method)
(moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessInterface method)
(moe.optimal_learning.python.python_version.gaussian_process.GaussianProcess method)
constant_liar_expected_improvement_optimization() (in module moe.optimal_learning.python.cpp_wrappers.expected_improvement)
CONSTANT_LIAR_METHODS (in module moe.optimal_learning.python.constant)
covariance() (moe.optimal_learning.python.cpp_wrappers.covariance.SquareExponential method)
(moe.optimal_learning.python.interfaces.covariance_interface.CovarianceInterface method)
(moe.optimal_learning.python.python_version.covariance.SquareExponential method)
COVARIANCE_INFO (in module moe_examples.blog_post_example_ab_testing)
covariance_type (moe.optimal_learning.python.cpp_wrappers.covariance.SquareExponential attribute)
(moe.optimal_learning.python.python_version.covariance.SquareExponential attribute)
COVARIANCE_TYPES (in module moe.optimal_learning.python.constant)
CovarianceInfo (class in moe.views.schemas.base_schemas)
CovarianceInterface (class in moe.optimal_learning.python.interfaces.covariance_interface)
CovarianceLinks (class in moe.optimal_learning.python.linkers)
cpp_covariance_class (moe.optimal_learning.python.linkers.CovarianceLinks attribute)
cpp_domain_class (moe.optimal_learning.python.linkers.DomainLinks attribute)
cpp_optimizer_class (moe.optimal_learning.python.linkers.OptimizerMethod attribute)
cpp_parameters_class (moe.optimal_learning.python.linkers.OptimizerMethod attribute)
cppify() (in module moe.optimal_learning.python.cpp_wrappers.cpp_utils)
cppify_hyperparameters() (in module moe.optimal_learning.python.cpp_wrappers.cpp_utils)
create_webapp() (moe.tests.views.rest_test_case.RestTestCase class method)
(moe_examples.tests.moe_example_test_case.MoeExampleTestCase class method)
current_point (moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement attribute)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood attribute)
(moe.optimal_learning.python.interfaces.optimization_interface.OptimizableInterface attribute)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement attribute)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood attribute)
(moe.tests.optimal_learning.python.python_version.optimization_test.QuadraticFunction attribute)
D
DEFAULT_MAX_NUM_THREADS (in module moe.optimal_learning.python.constant)
DefaultOptimizerInfoTuple (class in moe.optimal_learning.python.constant)
dim (moe.optimal_learning.python.cpp_wrappers.domain.SimplexIntersectTensorProductDomain attribute)
(moe.optimal_learning.python.cpp_wrappers.domain.TensorProductDomain attribute)
(moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement attribute)
(moe.optimal_learning.python.cpp_wrappers.gaussian_process.GaussianProcess attribute)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood attribute)
(moe.optimal_learning.python.data_containers.HistoricalData attribute)
(moe.optimal_learning.python.interfaces.domain_interface.DomainInterface attribute)
(moe.optimal_learning.python.interfaces.expected_improvement_interface.ExpectedImprovementInterface attribute)
(moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessInterface attribute)
(moe.optimal_learning.python.interfaces.log_likelihood_interface.GaussianProcessLogLikelihoodInterface attribute)
(moe.optimal_learning.python.python_version.domain.TensorProductDomain attribute)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement attribute)
(moe.optimal_learning.python.python_version.gaussian_process.GaussianProcess attribute)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood attribute)
(moe.optimal_learning.python.repeated_domain.RepeatedDomain attribute)
(moe.tests.optimal_learning.python.cpp_wrappers.expected_improvement_test.TestExpectedImprovement attribute)
(moe.tests.optimal_learning.python.cpp_wrappers.log_likelihood_test.TestLogLikelihood attribute)
(moe.tests.optimal_learning.python.gaussian_process_test_case.GaussianProcessTestCase attribute)
(moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
(moe.tests.optimal_learning.python.python_version.log_likelihood_test.TestGaussianProcessLogMarginalLikelihood attribute)
(moe.tests.optimal_learning.python.python_version.optimization_test.QuadraticFunction attribute)
disable_logging() (in module moe.tests.bandit.bandit_interface_test)
(in module moe.tests.bandit.data_containers_test)
(in module moe.tests.bandit.epsilon.epsilon_test)
(in module moe.tests.bandit.utils_test)
(in module moe.tests.views.exceptions_test)
Domain (class in moe.views.schemas.base_schemas)
domain_bounds (moe.optimal_learning.python.cpp_wrappers.domain.SimplexIntersectTensorProductDomain attribute)
(moe.optimal_learning.python.cpp_wrappers.domain.TensorProductDomain attribute)
domain_type (moe.optimal_learning.python.cpp_wrappers.domain.SimplexIntersectTensorProductDomain attribute)
(moe.optimal_learning.python.cpp_wrappers.domain.TensorProductDomain attribute)
(moe.optimal_learning.python.python_version.domain.TensorProductDomain attribute)
DOMAIN_TYPES (in module moe.optimal_learning.python.constant)
DomainCoordinate (class in moe.views.schemas.base_schemas)
DomainInfo (class in moe.views.schemas.base_schemas)
DomainInterface (class in moe.optimal_learning.python.interfaces.domain_interface)
DomainLinks (class in moe.optimal_learning.python.linkers)
E
endpoint (moe.tests.views.rest.gp_ei_test.TestGpEiView attribute)
(moe.tests.views.rest.gp_mean_var_test.TestGpMeanVarView attribute)
(moe.tests.views.rest_test_case.RestTestCase attribute)
ENDPOINT_TO_DEFAULT_OPTIMIZER_TYPE (in module moe.optimal_learning.python.constant)
epsilon (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
EPSILON_BANDIT_PARAMETER (in module moe_examples.blog_post_example_ab_testing)
EpsilonFirst (class in moe.bandit.epsilon.epsilon_first)
EpsilonGreedy (class in moe.bandit.epsilon.epsilon_greedy)
EpsilonInterface (class in moe.bandit.epsilon.epsilon_interface)
epsilons_to_test (moe.tests.bandit.epsilon.epsilon_test_case.EpsilonTestCase attribute)
EpsilonTestCase (class in moe.tests.bandit.epsilon.epsilon_test_case)
EqualityComparisonMixin (class in moe.optimal_learning.python.comparison)
evaluate_at_point_list() (moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement method)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement method)
evaluate_log_likelihood_at_hyperparameter_list() (in module moe.optimal_learning.python.cpp_wrappers.log_likelihood)
(in module moe.optimal_learning.python.python_version.log_likelihood)
ExpectedImprovement (class in moe.optimal_learning.python.cpp_wrappers.expected_improvement)
(class in moe.optimal_learning.python.python_version.expected_improvement)
ExpectedImprovementInterface (class in moe.optimal_learning.python.interfaces.expected_improvement_interface)
Experiment (class in moe.easy_interface.experiment)
EXPERIMENT_DOMAIN (in module moe_examples.blog_post_example_ab_testing)
EXPERIMENT_ITERATIONS (in module moe_examples.blog_post_example_ab_testing)
F
factr (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
failed_colander_validation() (in module moe.views.exceptions)
fill_random_covariance_hyperparameters() (in module moe.tests.optimal_learning.python.gaussian_process_test_utils)
fill_random_domain_bounds() (in module moe.tests.optimal_learning.python.gaussian_process_test_utils)
find_new_points_to_sample() (in module moe_examples.blog_post_example_ab_testing)
form_response() (moe.views.pretty_view.PrettyView method)
function_to_minimize() (in module moe_examples.combined_example)
(in module moe_examples.next_point_via_simple_endpoint)
G
GaussianProcess (class in moe.optimal_learning.python.cpp_wrappers.gaussian_process)
(class in moe.optimal_learning.python.python_version.gaussian_process)
GaussianProcessDataInterface (class in moe.optimal_learning.python.interfaces.gaussian_process_interface)
GaussianProcessInterface (class in moe.optimal_learning.python.interfaces.gaussian_process_interface)
GaussianProcessLeaveOneOutLogLikelihood (class in moe.optimal_learning.python.cpp_wrappers.log_likelihood)
GaussianProcessLogLikelihood (class in moe.optimal_learning.python.cpp_wrappers.log_likelihood)
GaussianProcessLogLikelihoodInterface (class in moe.optimal_learning.python.interfaces.log_likelihood_interface)
GaussianProcessLogMarginalLikelihood (class in moe.optimal_learning.python.cpp_wrappers.log_likelihood)
(class in moe.optimal_learning.python.python_version.log_likelihood)
GaussianProcessParameters (class in moe.optimal_learning.python.constant)
GaussianProcessTestCase (class in moe.tests.optimal_learning.python.gaussian_process_test_case)
GaussianProcessTestEnvironment (class in moe.tests.optimal_learning.python.gaussian_process_test_case)
GaussianProcessTestEnvironmentInput (class in moe.tests.optimal_learning.python.gaussian_process_test_case)
general_error() (in module moe.views.exceptions)
generate_grid_points() (in module moe.optimal_learning.python.geometry_utils)
generate_grid_points_in_domain() (moe.optimal_learning.python.python_version.domain.TensorProductDomain method)
generate_initial_traffic() (in module moe_examples.blog_post_example_ab_testing)
generate_latin_hypercube_points() (in module moe.optimal_learning.python.geometry_utils)
generate_new_arms() (in module moe_examples.blog_post_example_ab_testing)
generate_random_point_in_domain() (moe.optimal_learning.python.cpp_wrappers.domain.TensorProductDomain method)
(moe.optimal_learning.python.interfaces.domain_interface.DomainInterface method)
(moe.optimal_learning.python.python_version.domain.TensorProductDomain method)
(moe.optimal_learning.python.repeated_domain.RepeatedDomain method)
generate_uniform_random_points_in_domain() (moe.optimal_learning.python.cpp_wrappers.domain.SimplexIntersectTensorProductDomain method)
(moe.optimal_learning.python.cpp_wrappers.domain.TensorProductDomain method)
(moe.optimal_learning.python.interfaces.domain_interface.DomainInterface method)
(moe.optimal_learning.python.python_version.domain.TensorProductDomain method)
(moe.optimal_learning.python.repeated_domain.RepeatedDomain method)
get_allocations() (in module moe_examples.blog_post_example_ab_testing)
get_bla_payoff() (moe.bandit.bla.bla.BLA method)
get_bounding_box() (moe.optimal_learning.python.cpp_wrappers.domain.TensorProductDomain method)
(moe.optimal_learning.python.interfaces.domain_interface.DomainInterface method)
(moe.optimal_learning.python.python_version.domain.TensorProductDomain method)
(moe.optimal_learning.python.repeated_domain.RepeatedDomain method)
get_constraint_list() (moe.optimal_learning.python.cpp_wrappers.domain.TensorProductDomain method)
(moe.optimal_learning.python.interfaces.domain_interface.DomainInterface method)
(moe.optimal_learning.python.python_version.domain.TensorProductDomain method)
(moe.optimal_learning.python.repeated_domain.RepeatedDomain method)
get_core_data_copy() (moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessDataInterface method)
get_covariance_copy() (moe.optimal_learning.python.cpp_wrappers.gaussian_process.GaussianProcess method)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood method)
(moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessDataInterface method)
(moe.optimal_learning.python.python_version.gaussian_process.GaussianProcess method)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood method)
get_current_point() (moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement method)
(moe.optimal_learning.python.interfaces.optimization_interface.OptimizableInterface method)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement method)
(moe.tests.optimal_learning.python.python_version.optimization_test.QuadraticFunction method)
get_equal_arm_allocations() (in module moe.bandit.utils)
get_historical_data_copy() (moe.optimal_learning.python.cpp_wrappers.gaussian_process.GaussianProcess method)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood method)
(moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessDataInterface method)
(moe.optimal_learning.python.python_version.gaussian_process.GaussianProcess method)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood method)
get_hyperparameters() (moe.optimal_learning.python.cpp_wrappers.covariance.SquareExponential method)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood method)
(moe.optimal_learning.python.interfaces.covariance_interface.CovarianceInterface method)
(moe.optimal_learning.python.interfaces.log_likelihood_interface.GaussianProcessLogLikelihoodInterface method)
(moe.optimal_learning.python.python_version.covariance.SquareExponential method)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood method)
get_json_serializable_info() (moe.optimal_learning.python.cpp_wrappers.covariance.SquareExponential method)
(moe.optimal_learning.python.cpp_wrappers.domain.TensorProductDomain method)
(moe.optimal_learning.python.python_version.covariance.SquareExponential method)
(moe.optimal_learning.python.python_version.domain.TensorProductDomain method)
get_lie_value() (moe.views.rest.gp_next_points_constant_liar.GpNextPointsConstantLiar method)
get_params_from_request() (moe.views.optimizable_gp_pretty_view.OptimizableGpPrettyView method)
(moe.views.pretty_view.PrettyView method)
(moe.views.rest.bandit_epsilon.BanditEpsilonView method)
get_ucb_payoff() (moe.bandit.ucb.ucb1.UCB1 method)
(moe.bandit.ucb.ucb1_tuned.UCB1Tuned method)
(moe.bandit.ucb.ucb_interface.UCBInterface method)
get_unsampled_arm_names() (moe.bandit.ucb.ucb_interface.UCBInterface static method)
get_winning_arm_names() (moe.bandit.bla.bla.BLA method)
(moe.bandit.epsilon.epsilon_interface.EpsilonInterface static method)
(moe.bandit.ucb.ucb_interface.UCBInterface method)
get_winning_arm_names_from_payoff_arm_name_list() (in module moe.bandit.utils)
GLOBAL_OPTIMAL_PARAMETER (in module moe_examples.blog_post_example_ab_testing)
gp_ei_view() (moe.views.rest.gp_ei.GpEiView method)
gp_hyper_opt() (in module moe.easy_interface.simple_endpoint)
gp_hyper_opt_view() (moe.views.rest.gp_hyper_opt.GpHyperOptView method)
gp_mean_var() (in module moe.easy_interface.simple_endpoint)
gp_mean_var_diag_view() (moe.views.rest.gp_mean_var.GpMeanVarDiagView method)
gp_mean_var_response_dict() (moe.views.rest.gp_mean_var.GpMeanVarBaseView method)
gp_mean_var_view() (moe.views.rest.gp_mean_var.GpMeanVarView method)
gp_mean_view() (moe.views.rest.gp_mean_var.GpMeanView method)
gp_next_points() (in module moe.easy_interface.simple_endpoint)
gp_next_points_constant_liar_view() (moe.views.rest.gp_next_points_constant_liar.GpNextPointsConstantLiar method)
gp_next_points_epi_view() (moe.views.rest.gp_next_points_epi.GpNextPointsEpi method)
gp_next_points_kriging_view() (moe.views.rest.gp_next_points_kriging.GpNextPointsKriging method)
gp_plot_page() (in module moe.views.frontend)
gp_test_environment_input (moe.tests.optimal_learning.python.cpp_wrappers.expected_improvement_test.TestExpectedImprovement attribute)
(moe.tests.optimal_learning.python.cpp_wrappers.log_likelihood_test.TestLogLikelihood attribute)
(moe.tests.optimal_learning.python.gaussian_process_test_case.GaussianProcessTestCase attribute)
(moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
(moe.tests.optimal_learning.python.python_version.log_likelihood_test.TestGaussianProcessLogMarginalLikelihood attribute)
gp_var_diag_view() (moe.views.rest.gp_mean_var.GpVarDiagView method)
gp_var_view() (moe.views.rest.gp_mean_var.GpVarView method)
GpEiRequest (class in moe.views.gp_hyperparameter_update)
(class in moe.views.schemas.rest.gp_ei)
GpEiResponse (class in moe.views.schemas.rest.gp_ei)
GpEiView (class in moe.views.rest.gp_ei)
GpEndpointResponse (class in moe.views.schemas.rest.gp_mean_var)
GpHistoricalInfo (class in moe.views.schemas.base_schemas)
GpHyperOptRequest (class in moe.views.schemas.rest.gp_hyper_opt)
GpHyperOptResponse (class in moe.views.schemas.rest.gp_hyper_opt)
GpHyperOptStatus (class in moe.views.schemas.rest.gp_hyper_opt)
GpHyperOptView (class in moe.views.rest.gp_hyper_opt)
GpMeanMixinResponse (class in moe.views.schemas.rest.gp_mean_var)
GpMeanResponse (class in moe.views.schemas.rest.gp_mean_var)
GpMeanVarBaseView (class in moe.views.rest.gp_mean_var)
GpMeanVarDiagResponse (class in moe.views.schemas.rest.gp_mean_var)
GpMeanVarDiagView (class in moe.views.rest.gp_mean_var)
GpMeanVarRequest (class in moe.views.schemas.rest.gp_mean_var)
GpMeanVarResponse (class in moe.views.schemas.rest.gp_mean_var)
GpMeanVarView (class in moe.views.rest.gp_mean_var)
GpMeanView (class in moe.views.rest.gp_mean_var)
GpNextPointsConstantLiar (class in moe.views.rest.gp_next_points_constant_liar)
GpNextPointsConstantLiarRequest (class in moe.views.schemas.rest.gp_next_points_constant_liar)
GpNextPointsEpi (class in moe.views.rest.gp_next_points_epi)
GpNextPointsKriging (class in moe.views.rest.gp_next_points_kriging)
GpNextPointsKrigingRequest (class in moe.views.schemas.rest.gp_next_points_kriging)
GpNextPointsPrettyView (class in moe.views.gp_next_points_pretty_view)
GpNextPointsRequest (class in moe.views.schemas.gp_next_points_pretty_view)
GpNextPointsResponse (class in moe.views.schemas.gp_next_points_pretty_view)
GpNextPointsStatus (class in moe.views.schemas.gp_next_points_pretty_view)
GpPrettyView (class in moe.views.gp_pretty_view)
GpVarDiagMixinResponse (class in moe.views.schemas.rest.gp_mean_var)
GpVarDiagResponse (class in moe.views.schemas.rest.gp_mean_var)
GpVarDiagView (class in moe.views.rest.gp_mean_var)
GpVarMixinResponse (class in moe.views.schemas.rest.gp_mean_var)
GpVarResponse (class in moe.views.schemas.rest.gp_mean_var)
GpVarView (class in moe.views.rest.gp_mean_var)
grad_covariance() (moe.optimal_learning.python.cpp_wrappers.covariance.SquareExponential method)
(moe.optimal_learning.python.interfaces.covariance_interface.CovarianceInterface method)
(moe.optimal_learning.python.python_version.covariance.SquareExponential method)
GradientDescentOptimizer (class in moe.optimal_learning.python.cpp_wrappers.optimization)
(class in moe.optimal_learning.python.python_version.optimization)
GradientDescentParameters (class in moe.optimal_learning.python.cpp_wrappers.optimization)
(class in moe.optimal_learning.python.python_version.optimization)
GradientDescentParametersSchema (class in moe.views.schemas.base_schemas)
H
historical_infos_to_test (moe.tests.bandit.bandit_test_case.BanditTestCase attribute)
HistoricalData (class in moe.bandit.data_containers)
(class in moe.optimal_learning.python.data_containers)
hyperparameter_grad_covariance() (moe.optimal_learning.python.cpp_wrappers.covariance.SquareExponential method)
(moe.optimal_learning.python.interfaces.covariance_interface.CovarianceInterface method)
(moe.optimal_learning.python.python_version.covariance.SquareExponential method)
hyperparameter_hessian_covariance() (moe.optimal_learning.python.cpp_wrappers.covariance.SquareExponential method)
(moe.optimal_learning.python.interfaces.covariance_interface.CovarianceInterface method)
(moe.optimal_learning.python.python_version.covariance.SquareExponential method)
hyperparameters (moe.optimal_learning.python.cpp_wrappers.covariance.SquareExponential attribute)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood attribute)
(moe.optimal_learning.python.interfaces.covariance_interface.CovarianceInterface attribute)
(moe.optimal_learning.python.interfaces.log_likelihood_interface.GaussianProcessLogLikelihoodInterface attribute)
(moe.optimal_learning.python.python_version.covariance.SquareExponential attribute)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood attribute)
I
index_page() (in module moe.views.frontend)
is_empty() (moe.optimal_learning.python.geometry_utils.ClosedInterval method)
is_inside() (moe.optimal_learning.python.geometry_utils.ClosedInterval method)
J
json_payload() (moe.bandit.data_containers.HistoricalData method)
(moe.bandit.data_containers.SampleArm method)
(moe.optimal_learning.python.data_containers.HistoricalData method)
(moe.optimal_learning.python.data_containers.SamplePoint method)
K
kriging_believer_expected_improvement_optimization() (in module moe.optimal_learning.python.cpp_wrappers.expected_improvement)
L
LBFGSBOptimizer (class in moe.optimal_learning.python.python_version.optimization)
LBFGSBParameters (class in moe.optimal_learning.python.python_version.optimization)
LBFGSBParametersSchema (class in moe.views.schemas.base_schemas)
length (moe.optimal_learning.python.geometry_utils.ClosedInterval attribute)
length_scale (moe.optimal_learning.python.constant.GaussianProcessParameters attribute)
LIKELIHOOD_TYPES (in module moe.optimal_learning.python.constant)
ListOfExpectedImprovements (class in moe.views.schemas.base_schemas)
ListOfFloats (class in moe.views.schemas.base_schemas)
ListOfPointsInDomain (class in moe.views.schemas.base_schemas)
ListOfPositiveFloats (class in moe.views.schemas.base_schemas)
LOCAL_OPTIMAL_PARAMETER (in module moe_examples.blog_post_example_ab_testing)
log_likelihood_class (moe.optimal_learning.python.linkers.LogLikelihoodMethod attribute)
log_likelihood_type (moe.optimal_learning.python.linkers.LogLikelihoodMethod attribute)
LogLikelihoodMethod (class in moe.optimal_learning.python.linkers)
loss (moe.bandit.data_containers.SampleArm attribute)
M
main() (in module moe)
MAJOR (in module moe)
make_default_hyperparameters() (moe.optimal_learning.python.cpp_wrappers.covariance.SquareExponential static method)
make_params_from_bandit_historical_info() (moe.tests.views.utils_test.TestUtils method)
MatrixOfFloats (class in moe.views.schemas.base_schemas)
MAX_ALLOWED_NUM_THREADS (in module moe.optimal_learning.python.constant)
MAX_BERNOULLI_RANDOM_VARIABLE_VARIANCE (in module moe.bandit.constant)
max_func_evals (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
max_metric_correc (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
MINIMUM_STD_DEV_GRAD_CHOLESKY (in module moe.optimal_learning.python.python_version.gaussian_process)
MINIMUM_VARIANCE_EI (in module moe.optimal_learning.python.python_version.expected_improvement)
MINIMUM_VARIANCE_GRAD_EI (in module moe.optimal_learning.python.python_version.expected_improvement)
MINOR (in module moe)
moe (module)
moe.bandit (module)
moe.bandit.bandit_interface (module)
moe.bandit.bla (module)
moe.bandit.bla.bla (module)
moe.bandit.constant (module)
moe.bandit.data_containers (module)
moe.bandit.epsilon (module)
moe.bandit.epsilon.epsilon_first (module)
moe.bandit.epsilon.epsilon_greedy (module)
moe.bandit.epsilon.epsilon_interface (module)
moe.bandit.linkers (module)
moe.bandit.ucb (module)
moe.bandit.ucb.ucb1 (module)
moe.bandit.ucb.ucb1_tuned (module)
moe.bandit.ucb.ucb_interface (module)
moe.bandit.utils (module)
moe.build (module)
moe.easy_interface (module)
moe.easy_interface.bandit_simple_endpoint (module)
moe.easy_interface.experiment (module)
moe.easy_interface.simple_endpoint (module)
moe.optimal_learning (module)
moe.optimal_learning.cpp (module)
moe.optimal_learning.python (module)
moe.optimal_learning.python.comparison (module)
moe.optimal_learning.python.constant (module)
moe.optimal_learning.python.cpp_wrappers (module)
moe.optimal_learning.python.cpp_wrappers.covariance (module)
moe.optimal_learning.python.cpp_wrappers.cpp_utils (module)
moe.optimal_learning.python.cpp_wrappers.domain (module)
moe.optimal_learning.python.cpp_wrappers.expected_improvement (module)
moe.optimal_learning.python.cpp_wrappers.gaussian_process (module)
moe.optimal_learning.python.cpp_wrappers.log_likelihood (module)
moe.optimal_learning.python.cpp_wrappers.optimization (module)
moe.optimal_learning.python.data_containers (module)
moe.optimal_learning.python.geometry_utils (module)
moe.optimal_learning.python.interfaces (module)
moe.optimal_learning.python.interfaces.covariance_interface (module)
moe.optimal_learning.python.interfaces.domain_interface (module)
moe.optimal_learning.python.interfaces.expected_improvement_interface (module)
moe.optimal_learning.python.interfaces.gaussian_process_interface (module)
moe.optimal_learning.python.interfaces.log_likelihood_interface (module)
moe.optimal_learning.python.interfaces.optimization_interface (module)
moe.optimal_learning.python.linkers (module)
moe.optimal_learning.python.python_version (module)
moe.optimal_learning.python.python_version.covariance (module)
moe.optimal_learning.python.python_version.domain (module)
moe.optimal_learning.python.python_version.expected_improvement (module)
moe.optimal_learning.python.python_version.gaussian_process (module)
moe.optimal_learning.python.python_version.log_likelihood (module)
moe.optimal_learning.python.python_version.optimization (module)
moe.optimal_learning.python.python_version.python_utils (module)
moe.optimal_learning.python.repeated_domain (module)
moe.optimal_learning.python.timing (module)
moe.resources (module)
moe.tests (module)
moe.tests.bandit (module)
moe.tests.bandit.bandit_interface_test (module)
moe.tests.bandit.bandit_test_case (module)
moe.tests.bandit.bla (module)
moe.tests.bandit.bla.bla_test (module)
moe.tests.bandit.data_containers_test (module)
moe.tests.bandit.epsilon (module)
moe.tests.bandit.epsilon.epsilon_first_test (module)
moe.tests.bandit.epsilon.epsilon_greedy_test (module)
moe.tests.bandit.epsilon.epsilon_test (module)
moe.tests.bandit.epsilon.epsilon_test_case (module)
moe.tests.bandit.linkers_test (module)
moe.tests.bandit.ucb (module)
moe.tests.bandit.ucb.ucb1_test (module)
moe.tests.bandit.ucb.ucb1_tuned_test (module)
moe.tests.bandit.ucb.ucb_test_case (module)
moe.tests.bandit.utils_test (module)
moe.tests.optimal_learning (module)
moe.tests.optimal_learning.python (module)
moe.tests.optimal_learning.python.comparison_test (module)
moe.tests.optimal_learning.python.cpp_unit_tests (module)
moe.tests.optimal_learning.python.cpp_unit_tests.cpp_unit_test_wrapper_test (module)
moe.tests.optimal_learning.python.cpp_wrappers (module)
moe.tests.optimal_learning.python.cpp_wrappers.exception_test (module)
moe.tests.optimal_learning.python.cpp_wrappers.expected_improvement_test (module)
moe.tests.optimal_learning.python.cpp_wrappers.gaussian_process_test (module)
moe.tests.optimal_learning.python.cpp_wrappers.log_likelihood_test (module)
moe.tests.optimal_learning.python.cpp_wrappers.optimization_test (module)
moe.tests.optimal_learning.python.gaussian_process_test_case (module)
moe.tests.optimal_learning.python.gaussian_process_test_utils (module)
moe.tests.optimal_learning.python.geometry_utils_test (module)
moe.tests.optimal_learning.python.linkers_test (module)
moe.tests.optimal_learning.python.optimal_learning_test_case (module)
moe.tests.optimal_learning.python.python_version (module)
moe.tests.optimal_learning.python.python_version.covariance_test (module)
moe.tests.optimal_learning.python.python_version.expected_improvement_test (module)
moe.tests.optimal_learning.python.python_version.log_likelihood_test (module)
moe.tests.optimal_learning.python.python_version.optimization_test (module)
moe.tests.views (module)
moe.tests.views.exceptions_test (module)
moe.tests.views.rest (module)
moe.tests.views.rest.bandit_bla_test (module)
moe.tests.views.rest.bandit_epsilon_test (module)
moe.tests.views.rest.bandit_test (module)
moe.tests.views.rest.bandit_ucb_test (module)
moe.tests.views.rest.gp_ei_test (module)
moe.tests.views.rest.gp_hyper_opt_test (module)
moe.tests.views.rest.gp_mean_var_test (module)
moe.tests.views.rest.gp_next_points_test (module)
moe.tests.views.rest_test_case (module)
moe.tests.views.utils_test (module)
moe.views (module)
moe.views.bandit_pretty_view (module)
moe.views.constant (module)
moe.views.exceptions (module)
moe.views.frontend (module)
moe.views.gp_hyperparameter_update (module)
moe.views.gp_next_points_pretty_view (module)
moe.views.gp_pretty_view (module)
moe.views.optimizable_gp_pretty_view (module)
moe.views.pretty_view (module)
moe.views.rest (module)
moe.views.rest.bandit_bla (module)
moe.views.rest.bandit_epsilon (module)
moe.views.rest.bandit_ucb (module)
moe.views.rest.gp_ei (module)
moe.views.rest.gp_hyper_opt (module)
moe.views.rest.gp_mean_var (module)
moe.views.rest.gp_next_points_constant_liar (module)
moe.views.rest.gp_next_points_epi (module)
moe.views.rest.gp_next_points_kriging (module)
moe.views.schemas (module)
moe.views.schemas.bandit_pretty_view (module)
moe.views.schemas.base_schemas (module)
moe.views.schemas.gp_next_points_pretty_view (module)
moe.views.schemas.rest (module)
moe.views.schemas.rest.bandit_bla (module)
moe.views.schemas.rest.bandit_epsilon (module)
moe.views.schemas.rest.bandit_ucb (module)
moe.views.schemas.rest.gp_ei (module)
moe.views.schemas.rest.gp_hyper_opt (module)
moe.views.schemas.rest.gp_mean_var (module)
moe.views.schemas.rest.gp_next_points_constant_liar (module)
moe.views.schemas.rest.gp_next_points_kriging (module)
moe.views.utils (module)
moe_examples (module)
moe_examples.bandit_example (module)
moe_examples.blog_post_example_ab_testing (module)
moe_examples.combined_example (module)
moe_examples.hyper_opt_of_gp_from_historical_data (module)
moe_examples.mean_and_var_of_gp_from_historic_data (module)
moe_examples.next_point_via_simple_endpoint (module)
moe_examples.tests (module)
moe_examples.tests.bandit_example_test (module)
moe_examples.tests.combined_example_test (module)
moe_examples.tests.hyper_opt_of_gp_from_historical_data_test (module)
moe_examples.tests.mean_and_var_of_gp_from_historic_data_test (module)
moe_examples.tests.moe_example_test_case (module)
moe_examples.tests.next_point_via_simple_endpoint_test (module)
moe_experiment_from_sample_arms() (in module moe_examples.blog_post_example_ab_testing)
MoeExampleTestCase (class in moe_examples.tests.moe_example_test_case)
MoeRestLogLine (class in moe.views.constant)
MoeRoute (class in moe.views.constant)
multistart_expected_improvement_optimization() (in module moe.optimal_learning.python.cpp_wrappers.expected_improvement)
(in module moe.optimal_learning.python.python_version.expected_improvement)
multistart_hyperparameter_optimization() (in module moe.optimal_learning.python.cpp_wrappers.log_likelihood)
(in module moe.optimal_learning.python.python_version.log_likelihood)
multistart_optimize() (in module moe.optimal_learning.python.python_version.optimization)
multistarted_optimizer_test() (moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer method)
MultistartOptimizer (class in moe.optimal_learning.python.python_version.optimization)
MVNDSTParameters (class in moe.optimal_learning.python.python_version.expected_improvement)
MVNDSTParametersSchema (class in moe.views.schemas.base_schemas)
N
NewtonOptimizer (class in moe.optimal_learning.python.cpp_wrappers.optimization)
NewtonParameters (class in moe.optimal_learning.python.cpp_wrappers.optimization)
(class in moe.optimal_learning.python.python_version.optimization)
NewtonParametersSchema (class in moe.views.schemas.base_schemas)
NEXT_POINTS_OPTIMIZER_METHOD_NAMES (in module moe.views.constant)
noise_variance_base (moe.tests.optimal_learning.python.cpp_wrappers.expected_improvement_test.TestExpectedImprovement attribute)
(moe.tests.optimal_learning.python.cpp_wrappers.log_likelihood_test.TestLogLikelihood attribute)
(moe.tests.optimal_learning.python.gaussian_process_test_case.GaussianProcessTestCase attribute)
(moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
(moe.tests.optimal_learning.python.python_version.log_likelihood_test.TestGaussianProcessLogMarginalLikelihood attribute)
NotComparableObject (class in moe.tests.optimal_learning.python.comparison_test)
NullOptimizer (class in moe.optimal_learning.python.cpp_wrappers.optimization)
(class in moe.optimal_learning.python.python_version.optimization)
NullParameters (class in moe.optimal_learning.python.cpp_wrappers.optimization)
(class in moe.optimal_learning.python.python_version.optimization)
NullParametersSchema (class in moe.views.schemas.base_schemas)
num_arms (moe.bandit.data_containers.HistoricalData attribute)
num_being_sampled (moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement attribute)
(moe.optimal_learning.python.interfaces.expected_improvement_interface.ExpectedImprovementInterface attribute)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement attribute)
num_hyperparameters (moe.optimal_learning.python.cpp_wrappers.covariance.SquareExponential attribute)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood attribute)
(moe.optimal_learning.python.interfaces.covariance_interface.CovarianceInterface attribute)
(moe.optimal_learning.python.interfaces.log_likelihood_interface.GaussianProcessLogLikelihoodInterface attribute)
(moe.optimal_learning.python.python_version.covariance.SquareExponential attribute)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood attribute)
(moe.tests.optimal_learning.python.cpp_wrappers.expected_improvement_test.TestExpectedImprovement attribute)
(moe.tests.optimal_learning.python.cpp_wrappers.log_likelihood_test.TestLogLikelihood attribute)
(moe.tests.optimal_learning.python.gaussian_process_test_case.GaussianProcessTestCase attribute)
(moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
(moe.tests.optimal_learning.python.python_version.log_likelihood_test.TestGaussianProcessLogMarginalLikelihood attribute)
num_mc_iterations (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
num_sampled (moe.optimal_learning.python.cpp_wrappers.gaussian_process.GaussianProcess attribute)
(moe.optimal_learning.python.data_containers.HistoricalData attribute)
(moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessInterface attribute)
(moe.optimal_learning.python.python_version.gaussian_process.GaussianProcess attribute)
(moe.tests.optimal_learning.python.gaussian_process_test_case.GaussianProcessTestEnvironmentInput attribute)
num_sampled_list (moe.tests.optimal_learning.python.cpp_wrappers.expected_improvement_test.TestExpectedImprovement attribute)
(moe.tests.optimal_learning.python.cpp_wrappers.log_likelihood_test.TestLogLikelihood attribute)
(moe.tests.optimal_learning.python.gaussian_process_test_case.GaussianProcessTestCase attribute)
(moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
(moe.tests.optimal_learning.python.python_version.log_likelihood_test.TestGaussianProcessLogMarginalLikelihood attribute)
(moe.tests.views.rest.gp_mean_var_test.TestGpMeanVarView attribute)
(moe.tests.views.rest.gp_next_points_test.TestGpNextPointsViews attribute)
num_to_sample (moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement attribute)
(moe.optimal_learning.python.interfaces.expected_improvement_interface.ExpectedImprovementInterface attribute)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement attribute)
num_to_sample_list (moe.tests.optimal_learning.python.gaussian_process_test_case.GaussianProcessTestCase attribute)
NUMBER_OF_ACTIVE_COHORTS (in module moe_examples.blog_post_example_ab_testing)
O
objective_function() (in module moe_examples.blog_post_example_ab_testing)
one_arm_test_case (moe.tests.bandit.bandit_test_case.BanditTestCase attribute)
OptimalLearningTestCase (class in moe.tests.optimal_learning.python.optimal_learning_test_case)
OptimizableGpPrettyView (class in moe.views.optimizable_gp_pretty_view)
OptimizableInterface (class in moe.optimal_learning.python.interfaces.optimization_interface)
optimization_parameters_type (moe.optimal_learning.python.python_version.optimization.COBYLAOptimizer attribute)
(moe.optimal_learning.python.python_version.optimization.LBFGSBOptimizer attribute)
optimize() (moe.optimal_learning.python.cpp_wrappers.optimization.GradientDescentOptimizer method)
(moe.optimal_learning.python.cpp_wrappers.optimization.NewtonOptimizer method)
(moe.optimal_learning.python.cpp_wrappers.optimization.NullOptimizer method)
(moe.optimal_learning.python.interfaces.optimization_interface.OptimizerInterface method)
(moe.optimal_learning.python.python_version.optimization.GradientDescentOptimizer method)
(moe.optimal_learning.python.python_version.optimization.MultistartOptimizer method)
(moe.optimal_learning.python.python_version.optimization.NullOptimizer method)
optimizer_test() (moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer method)
optimizer_type (moe.optimal_learning.python.linkers.OptimizerMethod attribute)
OPTIMIZER_TYPE_AND_OBJECTIVE_TO_DEFAULT_PARAMETERS (in module moe.optimal_learning.python.constant)
OPTIMIZER_TYPES (in module moe.optimal_learning.python.constant)
OPTIMIZER_TYPES_TO_SCHEMA_CLASSES (in module moe.views.schemas.base_schemas)
OptimizerInfo (class in moe.views.schemas.base_schemas)
OptimizerInterface (class in moe.optimal_learning.python.interfaces.optimization_interface)
OptimizerMethod (class in moe.optimal_learning.python.linkers)
optimum_point (moe.tests.optimal_learning.python.python_version.optimization_test.QuadraticFunction attribute)
optimum_value (moe.tests.optimal_learning.python.python_version.optimization_test.QuadraticFunction attribute)
P
PATCH (in module moe)
pgtol (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
plot_sample_arms() (in module moe_examples.blog_post_example_ab_testing)
plot_system_ctr() (in module moe_examples.blog_post_example_ab_testing)
points_sampled (moe.optimal_learning.python.data_containers.HistoricalData attribute)
points_sampled_noise_variance (moe.optimal_learning.python.data_containers.HistoricalData attribute)
points_sampled_value (moe.optimal_learning.python.data_containers.HistoricalData attribute)
PointsSampled (class in moe.views.schemas.base_schemas)
PositiveFloat (class in moe.views.schemas.base_schemas)
precompute_gaussian_process_data (moe.tests.optimal_learning.python.cpp_wrappers.expected_improvement_test.TestExpectedImprovement attribute)
(moe.tests.optimal_learning.python.cpp_wrappers.gaussian_process_test.TestGaussianProcess attribute)
(moe.tests.optimal_learning.python.cpp_wrappers.log_likelihood_test.TestLogLikelihood attribute)
(moe.tests.optimal_learning.python.gaussian_process_test_case.GaussianProcessTestCase attribute)
(moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
(moe.tests.optimal_learning.python.python_version.log_likelihood_test.TestGaussianProcessLogMarginalLikelihood attribute)
(moe.tests.views.rest.gp_ei_test.TestGpEiView attribute)
(moe.tests.views.rest.gp_hyper_opt_test.TestGpHyperOptViews attribute)
(moe.tests.views.rest.gp_mean_var_test.TestGpMeanVarView attribute)
(moe.tests.views.rest.gp_next_points_test.TestGpNextPointsViews attribute)
pretty_response() (moe.views.pretty_view.PrettyView method)
pretty_view() (moe.views.rest.bandit_bla.BanditBLAView method)
(moe.views.rest.bandit_epsilon.BanditEpsilonView method)
(moe.views.rest.bandit_ucb.BanditUCBView method)
(moe.views.rest.gp_ei.GpEiView method)
(moe.views.rest.gp_hyper_opt.GpHyperOptView method)
(moe.views.rest.gp_mean_var.GpMeanVarDiagView method)
(moe.views.rest.gp_mean_var.GpMeanVarView method)
(moe.views.rest.gp_mean_var.GpMeanView method)
(moe.views.rest.gp_mean_var.GpVarDiagView method)
(moe.views.rest.gp_mean_var.GpVarView method)
(moe.views.rest.gp_next_points_constant_liar.GpNextPointsConstantLiar method)
(moe.views.rest.gp_next_points_epi.GpNextPointsEpi method)
(moe.views.rest.gp_next_points_kriging.GpNextPointsKriging method)
PrettyView (class in moe.views.pretty_view)
problem_size (moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement attribute)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood attribute)
(moe.optimal_learning.python.interfaces.optimization_interface.OptimizableInterface attribute)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement attribute)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood attribute)
(moe.tests.optimal_learning.python.python_version.optimization_test.QuadraticFunction attribute)
prune_arms() (in module moe_examples.blog_post_example_ab_testing)
pyramid_error_view() (in module moe.views.exceptions)
python_covariance_class (moe.optimal_learning.python.linkers.CovarianceLinks attribute)
python_domain_class (moe.optimal_learning.python.linkers.DomainLinks attribute)
python_optimizer_class (moe.optimal_learning.python.linkers.OptimizerMethod attribute)
python_parameters_class (moe.optimal_learning.python.linkers.OptimizerMethod attribute)
Q
QuadraticFunction (class in moe.tests.optimal_learning.python.python_version.optimization_test)
R
RepeatedDomain (class in moe.optimal_learning.python.repeated_domain)
request_schema (moe.views.gp_next_points_pretty_view.GpNextPointsPrettyView attribute)
(moe.views.pretty_view.PrettyView attribute)
(moe.views.rest.bandit_bla.BanditBLAView attribute)
(moe.views.rest.bandit_epsilon.BanditEpsilonView attribute)
(moe.views.rest.bandit_ucb.BanditUCBView attribute)
(moe.views.rest.gp_ei.GpEiView attribute)
(moe.views.rest.gp_hyper_opt.GpHyperOptView attribute)
(moe.views.rest.gp_mean_var.GpMeanVarBaseView attribute)
(moe.views.rest.gp_next_points_constant_liar.GpNextPointsConstantLiar attribute)
(moe.views.rest.gp_next_points_kriging.GpNextPointsKriging attribute)
response_schema (moe.views.gp_next_points_pretty_view.GpNextPointsPrettyView attribute)
(moe.views.pretty_view.PrettyView attribute)
(moe.views.rest.bandit_bla.BanditBLAView attribute)
(moe.views.rest.bandit_epsilon.BanditEpsilonView attribute)
(moe.views.rest.bandit_ucb.BanditUCBView attribute)
(moe.views.rest.gp_ei.GpEiView attribute)
(moe.views.rest.gp_hyper_opt.GpHyperOptView attribute)
(moe.views.rest.gp_mean_var.GpMeanVarDiagView attribute)
(moe.views.rest.gp_mean_var.GpMeanVarView attribute)
(moe.views.rest.gp_mean_var.GpMeanView attribute)
(moe.views.rest.gp_mean_var.GpVarDiagView attribute)
(moe.views.rest.gp_mean_var.GpVarView attribute)
RestTestCase (class in moe.tests.views.rest_test_case)
rng_seed (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement attribute)
Root (class in moe.resources)
run_example() (in module moe_examples.bandit_example)
(in module moe_examples.blog_post_example_ab_testing)
(in module moe_examples.combined_example)
(in module moe_examples.hyper_opt_of_gp_from_historical_data)
(in module moe_examples.mean_and_var_of_gp_from_historic_data)
(in module moe_examples.next_point_via_simple_endpoint)
run_time_consuming_experiment() (in module moe_examples.blog_post_example_ab_testing)
S
sample_point_from_gp() (moe.optimal_learning.python.cpp_wrappers.gaussian_process.GaussianProcess method)
(moe.optimal_learning.python.interfaces.gaussian_process_interface.GaussianProcessInterface method)
(moe.optimal_learning.python.python_version.gaussian_process.GaussianProcess method)
SampleArm (class in moe.bandit.data_containers)
SamplePoint (class in moe.optimal_learning.python.data_containers)
schema_type (moe.views.schemas.bandit_pretty_view.ArmAllocations attribute)
(moe.views.schemas.bandit_pretty_view.ArmsSampled attribute)
(moe.views.schemas.base_schemas.PositiveFloat attribute)
schema_type() (moe.views.schemas.base_schemas.StrictMappingSchema method)
scipy_kwargs() (moe.optimal_learning.python.python_version.optimization.COBYLAParameters method)
(moe.optimal_learning.python.python_version.optimization.LBFGSBParameters method)
set_current_point() (moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement method)
(moe.optimal_learning.python.interfaces.optimization_interface.OptimizableInterface method)
(moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement method)
(moe.tests.optimal_learning.python.python_version.optimization_test.QuadraticFunction method)
set_hyperparameters() (moe.optimal_learning.python.cpp_wrappers.covariance.SquareExponential method)
(moe.optimal_learning.python.cpp_wrappers.log_likelihood.GaussianProcessLogLikelihood method)
(moe.optimal_learning.python.interfaces.covariance_interface.CovarianceInterface method)
(moe.optimal_learning.python.interfaces.log_likelihood_interface.GaussianProcessLogLikelihoodInterface method)
(moe.optimal_learning.python.python_version.covariance.SquareExponential method)
(moe.optimal_learning.python.python_version.log_likelihood.GaussianProcessLogMarginalLikelihood method)
signal_variance (moe.optimal_learning.python.constant.GaussianProcessParameters attribute)
SimplexIntersectTensorProductDomain (class in moe.optimal_learning.python.cpp_wrappers.domain)
SinglePoint (class in moe.views.schemas.base_schemas)
some_function() (moe.tests.optimal_learning.python.comparison_test.ComparableTestObject method)
some_property (moe.tests.optimal_learning.python.comparison_test.ComparableTestObject attribute)
SquareExponential (class in moe.optimal_learning.python.cpp_wrappers.covariance)
(class in moe.optimal_learning.python.python_version.covariance)
STATUS_QUO_PARAMETER (in module moe_examples.blog_post_example_ab_testing)
StrictMappingSchema (class in moe.views.schemas.base_schemas)
subtype (moe.bandit.linkers.BanditMethod attribute)
T
TensorProductDomain (class in moe.optimal_learning.python.cpp_wrappers.domain)
(class in moe.optimal_learning.python.python_version.domain)
test_1d_analytic_ei_edge_cases() (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement method)
test_all_constant_liar_methods_function() (moe.tests.views.rest.gp_next_points_test.TestGpNextPointsViews method)
test_badly_formed_json_payload_invalid() (moe.tests.views.exceptions_test.TestRestGaussianProcessWithExceptions method)
test_bandit_links_have_all_bandit_endpoints() (moe.tests.bandit.linkers_test.TestLinkers method)
test_bfgs_multistarted_optimizer() (moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer method)
test_bfgs_optimizer() (moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer method)
test_cobyla_multistarted_optimizer() (moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer method)
test_cobyla_optimizer() (moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer method)
test_covariance_links_have_all_covariance_types() (moe.tests.optimal_learning.python.linkers_test.TestLinkers method)
test_domain_links_have_all_domain_types() (moe.tests.optimal_learning.python.linkers_test.TestLinkers method)
test_empty_arm_invalid() (moe.tests.bandit.bandit_interface_test.TestBanditInterface method)
(moe.tests.bandit.epsilon.epsilon_test.TestEpsilon method)
test_empty_json_payload_invalid() (moe.tests.views.exceptions_test.TestRestGaussianProcessWithExceptions method)
test_epsilon_first_hyperparameters_passed_through() (moe.tests.views.rest.bandit_epsilon_test.TestBanditEpsilonViews method)
test_epsilon_greedy_hyperparameters_passed_through() (moe.tests.views.rest.bandit_epsilon_test.TestBanditEpsilonViews method)
test_epsilon_links_have_all_epsilon_subtypes() (moe.tests.bandit.linkers_test.TestLinkers method)
test_eq() (moe.tests.optimal_learning.python.comparison_test.TestEqualityComparisonMixin method)
test_evaluate_ei_at_points() (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement method)
test_evaluate_log_likelihood_at_points() (moe.tests.optimal_learning.python.python_version.log_likelihood_test.TestGaussianProcessLogMarginalLikelihood method)
test_example_runs() (moe_examples.tests.hyper_opt_of_gp_from_historical_data_test.TestHyperOptOfGpFromHistoricalData method)
(moe_examples.tests.mean_and_var_of_gp_from_historic_data_test.TestMeanAndVarOfGpFromHistoricData method)
(moe_examples.tests.next_point_via_simple_endpoint_test.TestNextPointsViaSimpleEndpoint method)
test_example_runs_with_non_default_kwargs() (moe_examples.tests.bandit_example_test.TestBanditExample method)
test_example_runs_with_non_default_optimizer_kwargs() (moe_examples.tests.combined_example_test.TestCombinedExample method)
test_exception_class_hierarchy() (moe.tests.optimal_learning.python.cpp_wrappers.exception_test.TestExceptionStructure method)
test_exception_thrown_from_cpp() (moe.tests.optimal_learning.python.cpp_wrappers.exception_test.TestExceptionStructure method)
test_expected_improvement_and_gradient() (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement method)
test_get_averaging_range() (moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer method)
test_get_equal_arm_allocations_empty_arm_invalid() (moe.tests.bandit.utils_test.TestUtils method)
test_get_equal_arm_allocations_no_winner() (moe.tests.bandit.utils_test.TestUtils method)
test_get_equal_arm_allocations_one_winner() (moe.tests.bandit.utils_test.TestUtils method)
test_get_equal_arm_allocations_two_winners() (moe.tests.bandit.utils_test.TestUtils method)
test_get_winning_arm_names_from_payoff_arm_name_list_empty_list_invalid() (moe.tests.bandit.utils_test.TestUtils method)
test_get_winning_arm_names_from_payoff_arm_name_list_one_winner() (moe.tests.bandit.utils_test.TestUtils method)
test_get_winning_arm_names_from_payoff_arm_name_list_two_winners() (moe.tests.bandit.utils_test.TestUtils method)
test_gp_add_sampled_points_singular_covariance_matrix() (moe.tests.optimal_learning.python.cpp_wrappers.gaussian_process_test.TestGaussianProcess method)
test_gp_construction_singular_covariance_matrix() (moe.tests.optimal_learning.python.cpp_wrappers.gaussian_process_test.TestGaussianProcess method)
test_grad_log_likelihood_pings() (moe.tests.optimal_learning.python.python_version.log_likelihood_test.TestGaussianProcessLogMarginalLikelihood method)
test_gradient_descent_multistarted_optimizer() (moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer method)
test_gradient_descent_optimizer() (moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer method)
test_gradient_descent_optimizer_constrained() (moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer method)
test_gradient_descent_optimizer_with_averaging() (moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer method)
test_gradient_descent_parameters() (moe.tests.optimal_learning.python.cpp_wrappers.optimization_test.TestOptimizerParameters method)
test_grid_generation() (moe.tests.optimal_learning.python.geometry_utils_test.TestGridPointGeneration method)
test_hash() (moe.tests.optimal_learning.python.comparison_test.TestEqualityComparisonMixin method)
test_historical_data_append_arms() (moe.tests.bandit.data_containers_test.TestDataContainers method)
test_historical_data_append_arms_with_variance_invalid() (moe.tests.bandit.data_containers_test.TestDataContainers method)
test_historical_data_append_unsampled_arm() (moe.tests.bandit.data_containers_test.TestDataContainers method)
test_historical_data_str() (moe.tests.bandit.data_containers_test.TestDataContainers method)
test_historical_info_passed_through() (moe.tests.views.rest.bandit_bla_test.TestBanditBLAViews method)
(moe.tests.views.rest.bandit_epsilon_test.TestBanditEpsilonViews method)
(moe.tests.views.rest.bandit_ucb_test.TestBanditUCBViews method)
test_hyperparameter_gradient_pings() (moe.tests.optimal_learning.python.python_version.covariance_test.TestSquareExponential method)
test_hyperparameters_passed_through() (moe.tests.views.rest.gp_hyper_opt_test.TestGpHyperOptViews method)
test_init_default() (moe.tests.bandit.epsilon.epsilon_first_test.TestEpsilonFirst method)
(moe.tests.bandit.epsilon.epsilon_greedy_test.TestEpsilonGreedy method)
(moe.tests.bandit.ucb.ucb1_test.TestUCB1 method)
(moe.tests.bandit.ucb.ucb1_tuned_test.TestUCB1Tuned method)
test_interface_returns_as_expected() (moe.tests.views.rest.bandit_bla_test.TestBanditBLAViews method)
(moe.tests.views.rest.bandit_epsilon_test.TestBanditEpsilonViews method)
(moe.tests.views.rest.bandit_ucb_test.TestBanditUCBViews method)
test_interface_returns_same_as_cpp() (moe.tests.views.rest.gp_ei_test.TestGpEiView method)
(moe.tests.views.rest.gp_hyper_opt_test.TestGpHyperOptViews method)
(moe.tests.views.rest.gp_next_points_test.TestGpNextPointsViews method)
test_interfaces_equivalent() (moe.tests.views.rest.gp_mean_var_test.TestGpMeanVarView method)
test_invalid_hyperparameters_input() (moe.tests.views.exceptions_test.TestRestGaussianProcessWithExceptions method)
test_invalid_points_sampled_input() (moe.tests.views.exceptions_test.TestRestGaussianProcessWithExceptions method)
test_is_empty() (moe.tests.optimal_learning.python.geometry_utils_test.TestClosedInterval method)
test_is_inside() (moe.tests.optimal_learning.python.geometry_utils_test.TestClosedInterval method)
test_latin_hypercube_equally_spaced() (moe.tests.optimal_learning.python.geometry_utils_test.TestLatinHypercubeRandomPointGeneration method)
test_latin_hypercube_within_domain() (moe.tests.optimal_learning.python.geometry_utils_test.TestLatinHypercubeRandomPointGeneration method)
test_length() (moe.tests.optimal_learning.python.geometry_utils_test.TestClosedInterval method)
test_likelihood_links_have_all_likelihood_types() (moe.tests.optimal_learning.python.linkers_test.TestLinkers method)
test_make_bandit_historical_info_from_params_make_bernoulli_arms() (moe.tests.views.utils_test.TestUtils method)
test_make_bandit_historical_info_from_params_variance_passed_through() (moe.tests.views.utils_test.TestUtils method)
test_make_rand_point_within_domain() (moe.tests.optimal_learning.python.geometry_utils_test.TestLatinHypercubeRandomPointGeneration method)
test_mean_var_interface_returns_same_as_cpp() (moe.tests.views.rest.gp_mean_var_test.TestGpMeanVarView method)
test_multistart_analytic_expected_improvement_optimization() (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement method)
test_multistart_hyperparameter_optimization() (moe.tests.optimal_learning.python.python_version.log_likelihood_test.TestGaussianProcessLogMarginalLikelihood method)
test_multistart_monte_carlo_expected_improvement_optimization() (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement method)
test_multistart_qei_expected_improvement_dfo() (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement method)
test_multistarted_gradient_descent_optimizer_crippled_start() (moe.tests.optimal_learning.python.python_version.optimization_test.TestOptimizer method)
test_multistarted_null_optimizer() (moe.tests.optimal_learning.python.python_version.optimization_test.TestNullOptimizer method)
test_newton_parameters() (moe.tests.optimal_learning.python.cpp_wrappers.optimization_test.TestOptimizerParameters method)
test_null_optimizer() (moe.tests.optimal_learning.python.python_version.optimization_test.TestNullOptimizer method)
test_one_arm() (moe.tests.bandit.bandit_interface_test.TestBanditInterface method)
(moe.tests.bandit.bla.bla_test.TestBLA method)
(moe.tests.bandit.epsilon.epsilon_first_test.TestEpsilonFirst method)
(moe.tests.bandit.epsilon.epsilon_greedy_test.TestEpsilonGreedy method)
(moe.tests.bandit.ucb.ucb1_test.TestUCB1 method)
(moe.tests.bandit.ucb.ucb1_tuned_test.TestUCB1Tuned method)
test_optimization_links_have_all_optimizer_types() (moe.tests.optimal_learning.python.linkers_test.TestLinkers method)
test_optimizer_params_passed_through() (moe.tests.views.rest.gp_hyper_opt_test.TestGpHyperOptViews method)
(moe.tests.views.rest.gp_next_points_test.TestGpNextPointsViews method)
test_python_and_cpp_return_same_1d_analytic_ei_and_gradient() (moe.tests.optimal_learning.python.cpp_wrappers.expected_improvement_test.TestExpectedImprovement method)
test_python_and_cpp_return_same_cholesky_variance_and_gradient() (moe.tests.optimal_learning.python.cpp_wrappers.gaussian_process_test.TestGaussianProcess method)
test_python_and_cpp_return_same_log_likelihood_and_gradient() (moe.tests.optimal_learning.python.cpp_wrappers.log_likelihood_test.TestLogLikelihood method)
test_python_and_cpp_return_same_mu_and_gradient() (moe.tests.optimal_learning.python.cpp_wrappers.gaussian_process_test.TestGaussianProcess method)
test_python_and_cpp_return_same_variance_and_gradient() (moe.tests.optimal_learning.python.cpp_wrappers.gaussian_process_test.TestGaussianProcess method)
test_qd_and_1d_return_same_analytic_ei() (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement method)
test_qd_ei_with_self() (moe.tests.optimal_learning.python.python_version.expected_improvement_test.TestExpectedImprovement method)
test_run_cpp_unit_tests() (moe.tests.optimal_learning.python.cpp_unit_tests.cpp_unit_test_wrapper_test.TestCppUnitTestWrapper method)
test_sample_arm_add() (moe.tests.bandit.data_containers_test.TestDataContainers method)
test_sample_arm_add_arm_with_variance_invalid() (moe.tests.bandit.data_containers_test.TestDataContainers method)
test_sample_arm_iadd() (moe.tests.bandit.data_containers_test.TestDataContainers method)
test_sample_arm_str() (moe.tests.bandit.data_containers_test.TestDataContainers method)
test_sample_point_from_gp() (moe.tests.optimal_learning.python.cpp_wrappers.gaussian_process_test.TestGaussianProcess method)
test_square_exponential_covariance_one_dim() (moe.tests.optimal_learning.python.python_version.covariance_test.TestSquareExponential method)
test_square_exponential_covariance_three_dim() (moe.tests.optimal_learning.python.python_version.covariance_test.TestSquareExponential method)
test_square_exponential_grad_covariance_three_dim() (moe.tests.optimal_learning.python.python_version.covariance_test.TestSquareExponential method)
test_three_arms() (moe.tests.bandit.epsilon.epsilon_greedy_test.TestEpsilonGreedy method)
test_three_arms_diferent_variance() (moe.tests.bandit.ucb.ucb1_tuned_test.TestUCB1Tuned method)
test_three_arms_exploit() (moe.tests.bandit.epsilon.epsilon_first_test.TestEpsilonFirst method)
test_three_arms_exploit_two_winners() (moe.tests.bandit.epsilon.epsilon_first_test.TestEpsilonFirst method)
test_three_arms_explore() (moe.tests.bandit.epsilon.epsilon_first_test.TestEpsilonFirst method)
test_three_arms_one_unsampled_arm() (moe.tests.bandit.ucb.ucb1_test.TestUCB1 method)
(moe.tests.bandit.ucb.ucb1_tuned_test.TestUCB1Tuned method)
test_three_arms_two_winners() (moe.tests.bandit.bandit_interface_test.TestBanditInterface method)
(moe.tests.bandit.epsilon.epsilon_greedy_test.TestEpsilonGreedy method)
(moe.tests.bandit.epsilon.epsilon_test.TestEpsilon method)
(moe.tests.bandit.ucb.ucb1_test.TestUCB1 method)
(moe.tests.bandit.ucb.ucb1_tuned_test.TestUCB1Tuned method)
test_two_arms_epsilon_one() (moe.tests.bandit.epsilon.epsilon_first_test.TestEpsilonFirst method)
(moe.tests.bandit.epsilon.epsilon_greedy_test.TestEpsilonGreedy method)
test_two_arms_epsilon_zero() (moe.tests.bandit.epsilon.epsilon_first_test.TestEpsilonFirst method)
(moe.tests.bandit.epsilon.epsilon_greedy_test.TestEpsilonGreedy method)
test_two_arms_one_winner() (moe.tests.bandit.bandit_interface_test.TestBanditInterface method)
(moe.tests.bandit.bla.bla_test.TestBLA method)
test_two_unsampled_arms() (moe.tests.bandit.epsilon.epsilon_first_test.TestEpsilonFirst method)
(moe.tests.bandit.epsilon.epsilon_greedy_test.TestEpsilonGreedy method)
(moe.tests.bandit.epsilon.epsilon_test.TestEpsilon method)
(moe.tests.bandit.ucb.ucb1_test.TestUCB1 method)
(moe.tests.bandit.ucb.ucb1_tuned_test.TestUCB1Tuned method)
test_ucb_links_have_all_ucb_subtypes() (moe.tests.bandit.linkers_test.TestLinkers method)
TestBanditBLAViews (class in moe.tests.views.rest.bandit_bla_test)
TestBanditEpsilonViews (class in moe.tests.views.rest.bandit_epsilon_test)
TestBanditExample (class in moe_examples.tests.bandit_example_test)
TestBanditInterface (class in moe.tests.bandit.bandit_interface_test)
TestBanditUCBViews (class in moe.tests.views.rest.bandit_ucb_test)
TestBanditViews (class in moe.tests.views.rest.bandit_test)
TestBLA (class in moe.tests.bandit.bla.bla_test)
TestClosedInterval (class in moe.tests.optimal_learning.python.geometry_utils_test)
TestCombinedExample (class in moe_examples.tests.combined_example_test)
TestCppUnitTestWrapper (class in moe.tests.optimal_learning.python.cpp_unit_tests.cpp_unit_test_wrapper_test)
TestDataContainers (class in moe.tests.bandit.data_containers_test)
TestEpsilon (class in moe.tests.bandit.epsilon.epsilon_test)
TestEpsilonFirst (class in moe.tests.bandit.epsilon.epsilon_first_test)
TestEpsilonGreedy (class in moe.tests.bandit.epsilon.epsilon_greedy_test)
TestEqualityComparisonMixin (class in moe.tests.optimal_learning.python.comparison_test)
TestExceptionStructure (class in moe.tests.optimal_learning.python.cpp_wrappers.exception_test)
TestExpectedImprovement (class in moe.tests.optimal_learning.python.cpp_wrappers.expected_improvement_test)
(class in moe.tests.optimal_learning.python.python_version.expected_improvement_test)
TestGaussianProcess (class in moe.tests.optimal_learning.python.cpp_wrappers.gaussian_process_test)
TestGaussianProcessLogMarginalLikelihood (class in moe.tests.optimal_learning.python.python_version.log_likelihood_test)
TestGpEiView (class in moe.tests.views.rest.gp_ei_test)
TestGpHyperOptViews (class in moe.tests.views.rest.gp_hyper_opt_test)
TestGpMeanVarView (class in moe.tests.views.rest.gp_mean_var_test)
TestGpNextPointsViews (class in moe.tests.views.rest.gp_next_points_test)
TestGridPointGeneration (class in moe.tests.optimal_learning.python.geometry_utils_test)
TestHyperOptOfGpFromHistoricalData (class in moe_examples.tests.hyper_opt_of_gp_from_historical_data_test)
TestLatinHypercubeRandomPointGeneration (class in moe.tests.optimal_learning.python.geometry_utils_test)
TestLinkers (class in moe.tests.bandit.linkers_test)
(class in moe.tests.optimal_learning.python.linkers_test)
TestLogLikelihood (class in moe.tests.optimal_learning.python.cpp_wrappers.log_likelihood_test)
TestMeanAndVarOfGpFromHistoricData (class in moe_examples.tests.mean_and_var_of_gp_from_historic_data_test)
TestNextPointsViaSimpleEndpoint (class in moe_examples.tests.next_point_via_simple_endpoint_test)
TestNullOptimizer (class in moe.tests.optimal_learning.python.python_version.optimization_test)
TestOptimizer (class in moe.tests.optimal_learning.python.python_version.optimization_test)
TestOptimizerParameters (class in moe.tests.optimal_learning.python.cpp_wrappers.optimization_test)
TestRestGaussianProcessWithExceptions (class in moe.tests.views.exceptions_test)
TestSquareExponential (class in moe.tests.optimal_learning.python.python_version.covariance_test)
TestUCB1 (class in moe.tests.bandit.ucb.ucb1_test)
TestUCB1Tuned (class in moe.tests.bandit.ucb.ucb1_tuned_test)
TestUtils (class in moe.tests.bandit.utils_test)
(class in moe.tests.views.utils_test)
three_arms_float_payoffs_test_case (moe.tests.bandit.bandit_test_case.BanditTestCase attribute)
three_arms_test_case (moe.tests.bandit.bandit_test_case.BanditTestCase attribute)
three_arms_two_winners_no_unsampled_arm_test_case (moe.tests.bandit.bandit_test_case.BanditTestCase attribute)
three_arms_two_winners_test_case (moe.tests.bandit.bandit_test_case.BanditTestCase attribute)
three_arms_with_variance_no_unsampled_arm_test_case (moe.tests.bandit.bandit_test_case.BanditTestCase attribute)
timing_context() (in module moe.optimal_learning.python.timing)
title (moe.views.schemas.bandit_pretty_view.ArmAllocations attribute)
(moe.views.schemas.bandit_pretty_view.ArmsSampled attribute)
(moe.views.schemas.base_schemas.PositiveFloat attribute)
to_list_of_sample_points() (moe.optimal_learning.python.data_containers.HistoricalData method)
total (moe.bandit.data_containers.SampleArm attribute)
total_samples_to_test (moe.tests.bandit.epsilon.epsilon_first_test.TestEpsilonFirst attribute)
TRAFFIC_PER_DAY (in module moe_examples.blog_post_example_ab_testing)
true_click_through_rate() (in module moe_examples.blog_post_example_ab_testing)
two_arms_test_case (moe.tests.bandit.bandit_test_case.BanditTestCase attribute)
two_unsampled_arms_test_case (moe.tests.bandit.bandit_test_case.BanditTestCase attribute)
U
UCB1 (class in moe.bandit.ucb.ucb1)
UCB1Tuned (class in moe.bandit.ucb.ucb1_tuned)
UCBInterface (class in moe.bandit.ucb.ucb_interface)
UCBTestCase (class in moe.tests.bandit.ucb.ucb_test_case)
uncppify() (in module moe.optimal_learning.python.cpp_wrappers.cpp_utils)
V
validate() (moe.bandit.data_containers.BernoulliArm method)
(moe.bandit.data_containers.SampleArm method)
(moe.optimal_learning.python.data_containers.SamplePoint method)
validate_historical_data() (moe.optimal_learning.python.data_containers.HistoricalData static method)
validate_sample_arms() (moe.bandit.data_containers.HistoricalData static method)
validate_sample_points() (moe.optimal_learning.python.data_containers.HistoricalData static method)
validator() (moe.views.schemas.bandit_pretty_view.ArmAllocations method)
(moe.views.schemas.bandit_pretty_view.ArmsSampled method)
(moe.views.schemas.base_schemas.PositiveFloat method)
variance (moe.bandit.data_containers.SampleArm attribute)
W
win (moe.bandit.data_containers.SampleArm attribute)